
PHYSICAL REVIEW E JANUARY 1998VOLUME 57, NUMBER 1
Beam acceleration by plasma-loaded free-electron devices
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The use of a plasma-filled wiggler free-electron laser device operating near the plasma cutoff to accelerate
electron beams is examined. Near the cutoff, the group velocity of the microwave field in the plasma is much
less than the beam velocity. This scheme, therefore, operates in the pulse mode to accelerate electron beam
bunches much shorter than the wiggler length. Between one bunch and the other, the wiggler is reloaded with
microwave field. During the loading period, the laser-wiggler-plasma (SWL) Raman interaction generates a
Langmuir mode with the laser and the wiggler as the primary energy sources. When the wiggler plasma is fully
loaded with microwave field, a short electron bunch is fired into the device. In this accelerating period, the
Langmuir mode is coupled to the laser-wiggler-beam (SWB) free-electron-laser interaction. The condition that
the Langmuir phase velocity matches the free-electron-laser resonant beam velocity assures the simultaneous
interaction of theSWLandSWBparametric processes. Beam acceleration is accomplished fundamentally via
the space charge field of the Langmuir mode and the electron phase in the ponderomotive potential. Linear
energy gain regime is accomplished when the phase velocity of the Langmuir mode is exactly equal to the
speed of light.@S1063-651X~98!06701-4#

PACS number~s!: 52.75.Di, 52.75.Ms, 52.35.Nx
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I. INTRODUCTION

Free-electron devices such as the cyclotron autoreson
maser and the free-electron laser are powerful device
generate intense electromagnetic radiations in laborato
and also in solar coronas@1#. These systems are based on t
parametric interaction among the electron beam, the wigg
and the radiation field. The inverse application of these
vices can accelerate electron beams by using the radia
field as the primary energy source. The attainable beam
ergy depends on the power and energy of the radiation fi
To work at the optical frequency with powerful lasers r
quires very small wiggler periods due to the free-electr
laser parameter scaling. To accelerate electrons to the
GeV range calls for kilometric size wigglers@2#. Other rival-
ing mechanisms such as beat wave, wake field, and surfa
use a background plasma medium to achieve high grad
accelerations@3–6#. In these schemes, intense lasers are u
to generate a Langmuir wave in the background plas
through the ponderomotive force of either a single sh
pulse for wake field or a train of such pulses for beat wa
configurations. The lasers are operating high above
plasma cutoff while keeping the beat frequency near
plasma frequency. The electron beam then interacts dire
with the space charge field. Recent experiments have pro
the working principles of the beat wave acceleration w
great sucess@7,8#.

In a classical free space free-electron laser configurat
the static magnetic field wiggler is equivalent to a head
electromagnetic wave in the beam frame of the electro
This plus the forward propagating wave in a plasma loa
wiggler form an equivalent beat wave system to the labo
tory frame laser beat wave unit. Here, we consider t
plasma-loaded wiggler free-electron acceleration device@9–
12#. In Ref. @9#, Bobin has considered the two stream bea
plasma mode whose frequency is much higher than
plasma frequency. Parametric coupling among the laser fi
571063-651X/98/57~1!/1029~6!/$15.00
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the strong wiggler, and the beam-plasma mode then lead
beam acceleration or laser emission through the space ch
field. The analysis is only qualitative, and is limited to ord
of magnitude estimates. In this scenario, the device work
a continuous state sustained by the space charge field
long beam. In Ref.@12#, Maroli et al. have suggested oper
ating the plasma-loaded device near the cutoff using v
strong wiggler fields. Their calculation has assumed that
background gets relativistic because of the static wigg
field @13#. This evidently violates energy conservation of t
background plasma@14#. Their background plasma has
transverse velocity due to the static wiggler field. This velo
ity would contribute to a relativistic transverse current for
huge wiggler field in the wave equation of the laser field. W
believe this wiggler-dependent transverse velocity of
background plasma is incorrect. Furthermore, neither of
two publications treats the relative phases of the laser fi
and Langmuir mode. The evolutions of these relative pha
are as important as their corresponding field amplitudes
determining the parameters of an accelerator design.

Here, we reconsider the plasma-loaded wiggler in
same spirit of Bobin but taking into consideration the relat
phases and frequency mismatches. However, we aim to
erate the device near the cutoff with some essential dif
ences with earlier publications. First, we remark that
group velocity of the laser field is very small in this situatio
so that the device has to be operated in short beam pu
Between one beam pulse and the other, the wiggler plasm
reloaded with laser field throughout. Second, the Langm
mode is driven by the ponderomotive force of the laser a
wiggler fields, and not by single pulse or pulse train. Thi
the electron beam then interacts simultaneously with both
Langmuir space charge field through the Raman interact
and the wiggler and laser fields through the free-elect
laser resonance interaction. The electron beam is then a
erated efficiently through the space charge field and the r
tive phase of the ponderomotive potential. This is the pri
1029 © 1998 The American Physical Society
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1030 57K. H. TSUI, A. SERBETO, AND J. B. D’OLIVAL
motive for loading the wiggler with plasma. Fourth, the o
erating frequency~millimeter! of this configuration is much
lower than the two-laser~optical! beat wave configuration.

II. LANGMUIR MODE EXCITATION

The interaction of a low density electron beam (B) with a
laser field (S) under a magnetic wiggler (W) filled with a
low temperature high density plasma (L) can be divided into
two parametric interactions. The first is the laser-wiggl
plasma (SWL) Raman interaction, which excites the Lan
muir wave. The second is the laser-wiggler-beam (SWB)
free electron laser resonant interaction. Matching the ope
ing conditions of these two processes, the Langmuir w
can accelerate the electron beam through the space ch
field.

Operating near the cutoff frequency, the group velocity
the wiggler plasma is very slow. Therefore, it is necessar
load the wiggler plasma first with microwave field. Durin
this phase, only theSWLRaman interaction takes place, an
the Langmuir mode can be generated through the microw
and the wiggler. From basicSWL derivations, the back-
ground plasma with densityN satisfies the following equa
tion, which describes the density perturbationdN:

H ]2

]t2 2ve
2 ]2

]z2 1
1

g
vp

2J dN

N
5

c2

4g2

]2

]z2 S qAW

mc2 •

qAW

mc2D ,

~1!

whereg is the Lorentz factor for the background plasma, a
AW 5AW w1AW s is the total vector potential of the wiggler an
laser fields. Furthermore, the vector potential of the la
field and the scalar potentialF of the space charge field ar
described by

H ]2

]t2 2c2
]2

]z2 1
1

g
vp

2J qAW s

mc2 52
vp

2

g

dN

N

qAW s

mc2 , ~2!

]2

]z2

qF

mc2 52
vp

2

c2

dN

N
. ~3!
-
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e
rge

o

ve

d

r

We observe that Eq.~2! is different from the usual beat wav
scheme with two laser fields where both fields drive a tra
verse velocity in the background plasma. In our case,
static wiggler field does not drive such a velocity. This elim
nates thedNAw parametric term in Eq.~2! and leaves only
the dNAs term. For the same reason, the parametric term
Eq. ~1! is only half of what it is in standard beat wave de
vations. We consider the following harmonic dependence
(z,t) with slowly varying amplitudes and relativ
phases: AW s5As0 sin(ksz2vst1fs)yW, AW w5Aw0 sin(kwz)yW,
dN5dN0 sin(kLz2vLt1fL), andF5F0 sin(kLz2vLt1fL).
The laser and Langmuir modes are governed by their res
tive dispersion relations,

vs
25

1

g
vp

21c2ks
2 , ~4!

vL
25

1

g
vp

21ve
2kL

2 . ~5!

Since the magnetic wiggler is static, the Raman interact
requiresvs5vL , therefore, the laser mode is operating ne
the plasma cutoff, andks is nearly zero. If the plasma loade
wiggler length is less than 2p/ks , the laser field has a spa
tially uniform but time varying amplitudeAs0 inside the
plasma. Since this is the primary free energy source,
driven Langmuir mode has also a time varying only amp
tude dN0 with kL@ks . With the above considerations i
mind, and using the eikonal approximations, which requi
]As0 /]t!vsAs0 , ]As0 /]z!ksAs0 , and likewise for other
field variables, the Raman interaction with

cL5cs1cw , ~6!

wherecw5kwz, cs5ksz2vst, and cL5kLz2vLt are the
harmonic phases, is described by
2vLFdap

dt Gcos~cL1fL!22vLapFdfL

dt Gsin~cL1fL!52
c2kL

2

4g2 asaw cos~Df!cos~cL1fL!

2Fc2kL
2

4g2 asaw sin~Df!2~DvL
2!apGsin~cL1fL!, ~7!

2vsFdas

dt Gcos~cs1fs!22vsasFdfs

dt Gsin~cs1fs!5F1

g
vp

2ap sin~cL1fL!1~Dvs
2!Gas sin~cs1fs!, ~8!

f5
vp

2

c2kL
2 ap , ~9!
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57 1031BEAM ACCELERATION BY PLASMA-LOADED FREE- . . .
where aw5qAw0 /mc2, as5qAs0 /mc2, ap5dN/N,
f5qF/mc2, and Df5fL2fs . Also, Dvs

25vp
2/g1c2ks

2

2vs
2 , and DvL

25vp
2/g1ve

2kL
22vL

2 are the frequency mis
matches. The total derivatives in Eqs.~7! and ~8! are char-
acterized by the Langmuir and laser group velocities resp
tively in the convective part. If the dispersion relations a
exactly satisfied, there will be no mismatches. For a sm
plasma density deviation, the mismatches are nonzero. S
the density appears equally in both Eqs.~4! and~5!, and also
sincevs5vL , the two mismatches are always the same w
Dvs

25DvL
2 . For electron temperature deviations, which a

pear in Eq.~5! only, the two mismatches will be different.

III. BEAM ACCELERATION

When the plasma-filled wiggler is fully loaded with m
crowave field, and the Langmuir mode is generated, a s
electron bunch is fired into the device. During this brief m
ment when the beam traverses the wiggler, bothSWL and
SWB interactions take place simultaneously. Since the tr
sit time of the beam is almost negligible compared to
loading time of the wiggler plasma, and also since the be
density is usually much lower than the background plas
the feedback of the beam on the Langmuir mode of Eq.~7!,
in the presence of the large parametric driving force, is
considered. The beam inteacts with the system through
free-electron-laserSWBresonance; which relies on the res
nant condition

vs2ksvz5kwvz , ~10!

stating that the Doppler shifted laser frequency is equa
the wiggler frequency in the beam frame. The energy a
phase of each beam electron in the ponderomotive pote
are given by

Fdg j
2

dt G52vsasaw cos~Df!sin~c j1fL!

1Fvsasaw sin~Df!2
2g jb jvp

2

ckL
apGcos~c j1fL!,

~11!

Fdc j

dt G5ckL~bzj
2bL!, ~12!

respectively, where we have used Eq.~9! to obtain theap
term in Eq.~11!, andbz5vz /c andbL5vL /ckL . The con-
vective part of this total derivative carries the beam veloc
vz .

The action of the Langmuir mode is exercised through
ap term and the relative phasefL in Eq. ~11!. The Langmuir
wave has a phase velocityvL /kL , which can trap the beam
electrons with equal velocityvz5vL /kL . Although the Ra-
man scattering can operate oncL5cs6cw modes, we have
particularly chosen the upper sign. The fundamental rea
is that, withcL5cs1cw , the beam velocity satisfies

vz5
wL

kL
5

ws

ks1kw
, ~13!
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which is compatible with Eq.~10! for the free-electron-lase
resonant condition. This coupling allows the simultaneo
SWLandSWB interactions.

IV. ALONG THE CHARACTERISTICS

The first order partial differential equation that we a
considering can be transformed into a set of ordinary diff
ential equations along the characteristic@15,16#. Following
this representation, we write the equations along the la
and beam characteristics withzs5vgst, andzb5vzt. Physi-
cally, this means following the evolution of the relevant fie
in its own frame of energy transmission. For the laser fie
we are following the same wave packet. For the beam,
are following a fixed ensemble of beam electrons interact
with the spatially uniform fields. The electron phase in t
ponderomotive well isc j5kLzb j(t)2vLt. Since the Lang-
muir group velocity is much smaller than the laser gro
velocity, which is already small in the plasma, we ta
vgL50. The partial time derivative of the Langmuir mode
Eq. ~7! can be expressed in terms of the laser characteri
The equations now read

2vLvgs

dap

dzs
52

~ckL!2

4g2 asaw cosDf, ~14!

2vLvgs

dfL

dzs
5

~ckL!2

4g2

asaw

ap
sin Df2~DvL

2!, ~15!

2vsvgs

das

dzs
50, ~16!

2vsvgs

dfs

dzs
52

vp
2

g
ap sin~cL1fL!2~Dvs

2!, ~17!

vz

dg j
2

dzb
52vsasaw cosDf sin~c j1fL!1Fvsasaw sin Df

2
2g jb jvp

2

ckL
apGcos~c j1fL!, ~18!

vz

dc j

dzb
5ckL~bzj

2bL!, ~19!

where we have equated the sine and cosine terms inde
dently. The Langmuir modeap in Eq. ~14! is linear in zs
whenDf is small. It saturates when the cosine factor beg
to take action. The saturation level depends more on the
where Df becomes significant than on the productasaw ,
which determines the initial linear growth rate. The evoluti
of Df along the wiggler is given by Eqs.~15! and~17!. From
Eq. ~16!, the laser field amplitudeas is constant. This resul
is based on linear perturbation analysis, which requi
ap!1. Shouldap be large, the dispersion relation ofas ,
according to Eq.~2! including dN, would lead to a cutoff
frequency with large fluctuation where the propagation of
laser field is prejudiced. The acceleration of an elect
bunch in the established Langmuir mode is described by E
~18! and ~19!. For the parameters that we are consider
below, the dominant term in Eq.~18! is the Langmuir mode.
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1032 57K. H. TSUI, A. SERBETO, AND J. B. D’OLIVAL
V. OPERATING PARAMETERS

From the dispersion relations given by Eqs.~4! and ~5!,
with vs5vL , we have ks5(ve /c)kL5mkL and from
kL5kw1ks we havekL5kw /(12m). The wave vectors are
therefore, specified by the wiggler period. For a giv
plasma densityN, the mode frequency is then given by th
plasma dispersion relationvL

25vs
25vp

2/g1(mckL)2. The
Langmuir phase velocityvL /kL can thus be chosen in term
of vp , m, and kw . We consider plasma temperatu
Te51 eV, density N51.231013/cm3, initial energy
g(0)51, wiggler period lw51 cm, initial beam energy
gb(0)510, laser field as(0)50.5, and Langmuir field
ap(0)50. The initial relative phases are taken arbitrarily
fs50 andfL50. The number of sampled electrons is 30
and their initial distribution in the ponderomotive potential
uniform. Since m51.431023!1, kL'kw , the Langmuir
mode hasvL5vp , and lL'lw . The plasma frequency i
vp51.931011 rad/s, which corresponds to a 30 GHz micr
wave source. We have included the effect of the laser fiel
the background plasma energy so thatg5(11as

2/2)1/2 ac-
cording to «25(mc2)21(pc)2, p5gmv, and «5gmc2.
For the plasma density chosen above and hence the m
wave frequency used, the phase velocity of the Langm
mode, with the chosen wiggler period, happens to be in
vicinity of the speed of light. The choice of plasma density
directly related to the availability of microwave source.

We note that, by fixing the plasma density, electron te
perature, and wiggler period, the operating parameters o
device are uniquely defined. However, the laser frequenc
given externally, and to produce a plasma of exactly t
density is impossible, and some frequency mismatch
therefore, unavoidable. If the plasma density is higher t
what it should be, the laser field will be reflected on t
plasma-vacuum interface. We, thus, consider only nega
frequency mismatch corresponding to density below the
pected value. Deviations of plasma temperature make
two frequency mismatches unequal. Near the cutoff, we h
ls /lL5720. Consequently, we fix our normalized wiggl
lengthZ(L)5L/lL5300 to assure a spatially uniform las
field.

Due to the small group velocity, the laser characteris
moves along slowly. In order to integrate these equati
correctly, we need to take very small step sizes. In our c
we have divided each wiggler period in 43104 steps. This is
exclusively a feature of our system that operates near
cutoff with a slow group velocity. The phasecL in Eq. ~17!
along the laser characteristic iscL52kLz/m. The interval
of Dz within which cL varies by 2p is Dz5mlL5mlw ,
which is much less than the wiggler period. Consequen
we need a large number of grid points over one wigg
period to accurately followcL in Eq. ~17!.

VI. FREQUENCY MISMATCHES

We consider the generation of the Langmuir mode
examining, first, the experimentally unrealistic case of z
mismatches. In this case, the Langmuir mode grows to
plitudes much larger than unity. This solution can be und
stood by using the fact thatcL varies rapidly to take a spatia
average of Eq.~17!, which gives fs50. Consequently,
s
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fL5Df, and Eq.~15! becomes an equation forDf. Since
Df50 initially, it remains zero thereafter. With the invar
ance ofDf, Eq. ~14! gives a linear growth ofap . Without
using the spatial average of Eq.~17!, and solving Eqs.~14!–
~17! numerically, the Langmuir amplitude is still large a
though it is no longer linear along the wiggler. Since t
frequency doubling quadratic terms in the fluid equations
not considered here, the saturation level of the space ch
field is unrealistically high, which is incompatible with ou
linear parametric analysis. In practice, the quadratic te
would limit the space charge field at a much lower lev
where the driving energy begins to leak to other frequenc
For two mismatches identically equal, similar solutions a
obtained. This is because, by taking the difference betw
Eqs.~15! and ~17!, the mismatch can be eliminated to yie
the same equation ofDf.

We now consider unequal mismatches. We note that
generation of the Langmuir mode depends on the pond
motive productawas only, which allows us to combine eithe
a moderate wiggler field with a weak microwave, or a we
wiggler field with a moderate microwave source. With wi
gler field Bw5200 G, the evolution of the Langmuir mod
ap , and the phaseDf5(fL2fs) as a function of the nor-
malized wiggler distanceZ5z/lL are shown in Fig. 1. The
evolution of the phaseDf according to Eqs.~15! and ~17!
and the cosine factor in Eq.~14! make the Langmuir mode
saturate atap50.25 with Df5p/2. Our spatial solution
along the characteristic corresponds to the temporal solu
at any fixed location along the wiggler. Consequently, a u
form Langmuir mode is established in the wiggler. Here,
Langmuir mode settles down to a negative amplitude, wh
corresponds to a phase shift ofp. Shouldcs5p be chosen
initially, ap would be positive. The results of Fig. 1 demo
strate the importance of the relative phases and freque
mismatches in our model. The primary message here is
the Langmuir mode with a specific wave vector can
readily driven in this system with simple equipment a
weak wiggler field. A spatially uniform Langmuir mode i
now established whose amplitude is limited by real con
tions.

To consider beam acceleration, we then fire intermitt

FIG. 1. The Langmuir modeap , and the phaseDf are plotted
against the normalized wiggler distanceZ5z/lL with Bw5200 G,
Dvs

2/(ckL)2521022, andDvL
2/(ckL)252231022.
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57 1033BEAM ACCELERATION BY PLASMA-LOADED FREE- . . .
short electron bunches into the device. The interval betw
bunches corresponds to the loading time of the wigg
plasma. We then integrate Eqs.~18! and~19! along the beam
characteristic in the presence of an established unif
Langmuir mode and the profiles ofDf andfL . From Fig. 1,
we takeDf5p/2 as input plusfL50. The acceleration o
each beam electron depends on the phasec j in the pondero-
motive potential. Its evolution is a function of the veloci
mismatch between the electron and the Langmuir phase
locity as described in Eq.~19!. Here, the equations are inte
grated along the fast beam characteristic so that 100
points in each wiggler period are sufficient. Since the La
muir phase velocity is a function of plasma density, we a
lyze the beam acceleration for several densities, all in
vicinity of bL51. Taking a positive amplitude with
ap50.25, the results in Fig. 2 show a linear acceleration
g5320 whenbL51 exactly. For very small deviations wit
bL slightly above unity, the beam energy in Fig. 2 sho
oscillations at low levels, and likewise for deviations sligh
below unity. Consequently, this puts a strong demand
monitoring the plasma density at the exact desired va
which would also control the frequency mismatch. The e
ergy distribution of the sampled electrons in the ponderom
tive well at Z5300 with bL51 is shown in Fig. 3, which
shows a sizable energy distribution ranging from unity
510.

To understand the linear growth, we examine Eqs.~18!
and ~19! for the case ofbL51. We observe that Eq.~19!
indicates thatc j approaches a constant asymptotically asbz j
goes to unity. For the electron energy, Eq.~18!, without the
smallasaw terms, shows thatdg j /dzb approaches a constan
as well. The individual electron energy and, hence, the a
age beam energy grow linearly along the wiggler. Und
these conditions, Eq.~18! becomes

g~zb!5
vp

2

~ckL!2 ~kLzb!ap5bL
2~kLzb!ap . ~20!

According to Eq.~20! of linear growth, and withap50.25,
we haveg52p3300ap5460 at the end of the wiggler
which accounts of the numerical result. ShouldbL be differ-
ent from unity, then neitherc j nor dg j /dzb is stationary as

FIG. 2. The beam energyg is plotted against the normalize
wiggler distance Z5z/lL with Bw5200 G, N1,2,351.188,
1.190,1.20031013 cm3, Df5p/2.
n
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r

bz j approaches unity, which lowers the energy gain. To su
marize our findings, it is absolutely essential to choose
primary system parameters,vp ,vs ,m,kw , such thatbL is as
close to unity as possible with minimum frequency misma
to acertain the excitation of the Langmuir mode and the
celeration of the beam over the entire wiggler. Unfort
nately, Eq.~20! also claims that we are unable to increme
more than 460 on the beam energy limited by the wigg
size for uniformas . This limitation cannot be contoured b
increasing the plasma density with compatible microwa
source sincebL51 is required at any density with matchin
source. As density goes up, wiggler period has to go dow
keep the Langmuir mode phase velocity close to the spee
light. Should we operate the system at much higher dens
without shortening the wiggler period correspondingly
achieve much higher energies sincebL would be much larger
than unity, we would be disappointed. The factorbL

2 alone in
Eq. ~20! would not lead to higher energies since the cos
factor in Eq.~18! would set in immediately at largebL to
saturate the beam energy at low levels. Numerical integ
tion, in this case, would require very dense grid points
accurately follow thec j in the cosine factor.

VII. DISCUSSIONS AND CONCLUSIONS

For an electron beam to reach, for example,g5200 or
100 MeV at the end of the wiggler, there is 1.6310211 J for
each electron. With a beam density of 1010/cm3, this
amounts to a beam energy density ofUb50.16 J/cm3. In
steady state, the microwave energy density in free spaceU0
and inside the plasmaUp satisfy the Poynting vector, o
energy density flux, continuity across the plasma-vacuum
terface with

U0c5Upvgs5Upc2
ks

vs
, ~21!

where vgs is the group velocity in plasma. By usin
ls5720lL , we getvgs54.23106 cm/s. With this group ve-
locity, it takes 70ms to fill up the wiggler of 3 m in length

FIG. 3. Energy distributiong j of the sampled electrons as
function of the ponderomotive phasec j in the potential well at
Z5300 with N51.18831013 cm3.
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1034 57K. H. TSUI, A. SERBETO, AND J. B. D’OLIVAL
with microwave field. We can, therefore, build up a hig
energy density field in the plasma with a low energy dens
source in free space. This spatially uniform microwave fi
energy is then transferred to the beam of lengthLb!L,
which takes about 10 ns to traverse the wiggler, launche
the moment when the wiggler is completely loaded with m
crowave. We then haveUb5Up5U0c/vgs . Let us consider
that the beam, the plasma, and the microwave have e
cross sectionsA. The microwave energy is then estimated
W5UpLA5UbLA. With A51 cm2, we need a microwave
energy of W550 J. With the loading time of 70ms, the
source in free space has to have a power ofP5700 kW.
Since the group velocity is much less than the beam veloc
the wave energy could be depleted by the leading edge
long beam. Our configuration is, therefore, suitable only
accelerate short beam bunches with, for example,Lb5L/10.
Between one bunch and the other, the plasma has to b
loaded with microwave field. In our calculations, we ha
usedas(0)50.5 in the plasma. This normalized amplitude
equivalent to a microwave energy in the plasma loaded w
gler volume W540 J. Since we are operating in pulse
mode, there is no strong power demand on the microw
source. By extending the beam intermittent time, the wigg
plasma can be loaded over a longer period with a less p
erful source.

We have examined the use of a plasma loaded f
electron-laser device to accelerate an electron beam.
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four entity (S,W,L,B) interaction is executed through tw
parametric interactions, the Raman (SWL) and the free elec-
tron laser (SWB), respectively. Our model has included th
relative phasesfs and fL in the fast oscillating harmonic
phases (ksz2vst) and (kLz2vLt). This happens to be a
very important element in the dynamics of a plasma-load
free electron device. Operating in the pulsed mode near
cutoff, the merit of a plasma-loaded free-electron device
that it can readily generate a Langmuir mode by Raman
teraction with only a small wiggler field and an availab
microwave source in contrast to wake field and beat w
schemes. The electron beam is then efficiently accelerate
the space charge field of the Langmuir mode. Although
ponderomotive termasaw in the beam energy equation
negligible, the free-electron-laser interaction makes its pr
ence through the ponderomotive phase, described by
~19!, due to the cos(cj1fL) factor in Eq.~18!. Without the
plasma loading, a conventional inverse free-electron-la
device would require a much larger wiggler field and micr
wave power to achieve the equivalent acceleration.
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