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Beam acceleration by plasma-loaded free-electron devices
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The use of a plasma-filled wiggler free-electron laser device operating near the plasma cutoff to accelerate
electron beams is examined. Near the cutoff, the group velocity of the microwave field in the plasma is much
less than the beam velocity. This scheme, therefore, operates in the pulse mode to accelerate electron beam
bunches much shorter than the wiggler length. Between one bunch and the other, the wiggler is reloaded with
microwave field. During the loading period, the laser-wiggler-plas®®#/() Raman interaction generates a
Langmuir mode with the laser and the wiggler as the primary energy sources. When the wiggler plasma is fully
loaded with microwave field, a short electron bunch is fired into the device. In this accelerating period, the
Langmuir mode is coupled to the laser-wiggler-be&@W(B free-electron-laser interaction. The condition that
the Langmuir phase velocity matches the free-electron-laser resonant beam velocity assures the simultaneous
interaction of theSWLandSWBparametric processes. Beam acceleration is accomplished fundamentally via
the space charge field of the Langmuir mode and the electron phase in the ponderomotive potential. Linear
energy gain regime is accomplished when the phase velocity of the Langmuir mode is exactly equal to the
speed of light[S1063-651X98)06701-4

PACS numbgs): 52.75.Di, 52.75.Ms, 52.35.Nx

[. INTRODUCTION the strong wiggler, and the beam-plasma mode then leads to
beam acceleration or laser emission through the space charge
Free-electron devices such as the cyclotron autoresonanéield. The analysis is only qualitative, and is limited to order
maser and the free-electron laser are powerful devices tof magnitude estimates. In this scenario, the device works in
generate intense electromagnetic radiations in laboratories continuous state sustained by the space charge field of a
and also in solar corong4]. These systems are based on thelong beam. In Ref[12], Maroli et al. have suggested oper-
parametric interaction among the electron beam, the wigglemting the plasma-loaded device near the cutoff using very
and the radiation field. The inverse application of these destrong wiggler fields. Their calculation has assumed that the
vices can accelerate electron beams by using the radiatidmackground gets relativistic because of the static wiggler
field as the primary energy source. The attainable beam effield [13]. This evidently violates energy conservation of the
ergy depends on the power and energy of the radiation fieldackground plasmé#&l4]. Their background plasma has a
To work at the optical frequency with powerful lasers re-transverse velocity due to the static wiggler field. This veloc-
quires very small wiggler periods due to the free-electrondity would contribute to a relativistic transverse current for a
laser parameter scaling. To accelerate electrons to the 10@uge wiggler field in the wave equation of the laser field. We
GeV range calls for kilometric size wigglef2]. Other rival-  believe this wiggler-dependent transverse velocity of the
ing mechanisms such as beat wave, wake field, and surfatrdrackground plasma is incorrect. Furthermore, neither of the
use a background plasma medium to achieve high gradiefiivo publications treats the relative phases of the laser field
acceleration§3—6]. In these schemes, intense lasers are usednd Langmuir mode. The evolutions of these relative phases
to generate a Langmuir wave in the background plasmare as important as their corresponding field amplitudes in
through the ponderomotive force of either a single shordetermining the parameters of an accelerator design.
pulse for wake field or a train of such pulses for beat wave Here, we reconsider the plasma-loaded wiggler in the
configurations. The lasers are operating high above thsame spirit of Bobin but taking into consideration the relative
plasma cutoff while keeping the beat frequency near thephases and frequency mismatches. However, we aim to op-
plasma frequency. The electron beam then interacts directlgrate the device near the cutoff with some essential differ-
with the space charge field. Recent experiments have proveshces with earlier publications. First, we remark that the
the working principles of the beat wave acceleration withgroup velocity of the laser field is very small in this situation
great sucesf7,8]. so that the device has to be operated in short beam pulses.
In a classical free space free-electron laser configuratiorBetween one beam pulse and the other, the wiggler plasma is
the static magnetic field wiggler is equivalent to a head-orreloaded with laser field throughout. Second, the Langmuir
electromagnetic wave in the beam frame of the electronanode is driven by the ponderomotive force of the laser and
This plus the forward propagating wave in a plasma loadeaviggler fields, and not by single pulse or pulse train. Third,
wiggler form an equivalent beat wave system to the laborathe electron beam then interacts simultaneously with both the
tory frame laser beat wave unit. Here, we consider thid.angmuir space charge field through the Raman interaction,
plasma-loaded wiggler free-electron acceleration deMiee  and the wiggler and laser fields through the free-electron
12]. In Ref.[9], Bobin has considered the two stream beamdaser resonance interaction. The electron beam is then accel-
plasma mode whose frequency is much higher than therated efficiently through the space charge field and the rela-
plasma frequency. Parametric coupling among the laser fieldive phase of the ponderomotive potential. This is the prime
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motive for loading the wiggler with plasma. Fourth, the op- We observe that Eq2) is different from the usual beat wave
erating frequencymillimeter) of this configuration is much scheme with two laser fields where both fields drive a trans-
lower than the two-lasefoptica) beat wave configuration.  verse velocity in the background plasma. In our case, the
static wiggler field does not drive such a velocity. This elimi-
Il. LANGMUIR MODE EXCITATION nates theSNA,, parametric term in Eqg(2) and leaves only
) ) ) ) the SNA; term. For the same reason, the parametric term in
The interaction of a low density electron beaB)witha  Eq. (1) is only half of what it is in standard beat wave deri-
laser field ©) under a magnetic wigglen) filled with @ yations. We consider the following harmonic dependences in
low temperature high density plasmia)(can be divided into (7 t) with slowly varying amplitudes and relative
tvlvo parametric mterac'tlons. The f|rs§ is the. Iaser-W|ggIet—phases: ASZASO sin(ksz—wst+¢5)§, '&w:AWO sin(sz))7,
plasma EWL Raman interaction, which excites the Lang SN= Ny Sin( z— @ t-+ ), andd =Dy, sinf 2w t+ b,)
muir wave. The second is the laser-wiggler-bea®WB 0 L 0 Lo L
. ) . e laser and Langmuir modes are governed by their respec
free electron laser resonant interaction. Matching the opera{i—ve dispersion relations
ing conditions of these two processes, the Langmuir wave '
can accelerate the electron beam through the space charge
field.
Operating near the cutoff frequency, the group velocity in ) 2 o2
the wiggler plasma is very slow. Therefore, it is necessary to wsz;wp”L cks, 4
load the wiggler plasma first with microwave field. During
this phase, only th& WL Raman interaction takes place, and
the Langmuir mode can be generated through the microwave
and the wiggler. From basiSWL derivations, the back- ) 5 212
ground plasma with densiti satisfies the following equa- sz;‘”p“LvekL- 5
tion, which describes the density perturbatié:

Since the magnetic wiggler is static, the Raman interaction
92 , P 1 ,| oN c?2 92 q,& q,& requiresw,= w, , therefore, the laser mode is operating near
W—vePJr ;wp] N~ 4—72 2\ m& m&)’ th'e plasma cutpff, anki is nearly zero. If the'plasma loaded

wiggler length is less than2/kg, the laser field has a spa-

) tially uniform but time varying amplitudédy, inside the

Qplasma. Since this is the primary free energy source, the
LT i i driven Langmuir mode has also a time varying only ampli-
A=A, +As is the total vector potential of the wiggler and ,qe sN, with k >k,. With the above considerations in

Igser fields. Furthermore,'the vector potential of .the Iasermnd, and using the eikonal approximations, which requires
field and the scalar potentid} of the space charge field are IAg t<whgy, dAsldz<kAg, and likewise for other

described by field variables, the Raman interaction with

wherevy is the Lorentz factor for the background plasma, an

P a1, gAs  wp SN gA, @
B2 2% mET Ty N me& Y= st Y, (6)
2
# qP  w, N 3 Whereyy=k,z, y=kz-od, andy =k z—wt are the

ZZmZ 2 N harmonic phases, is described by

c2k?

ap d¢|_ . L
2w at cos Y+ ¢ ) —2w.a, ar sin(g+é)=— 4_,yzasaw cogA¢)cod i + ¢y )

sin(y+ o), (7)

CZ 2
—[Tyéasaw Si(A¢) —(Awd)a,

dés| :
d—qi Sin( s+ ¢dg) = as Sin( s+ ¢s), tS)

dag _ 1 2 . 2
COY st ps) —2wsas ,ywpap sin(y+ ¢ ) +(Awg)

dt

2wg

2
w

b= —52a,, (9)
c?k? P
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where a,=qA,0/McZ, a;=qAy/mc?, a,=4N/N, which is compatible with Eq(10) for the free-electron-laser
p=qd/mc?, andA¢= ¢ — ¢s. Also, Aw§=w§/y+c2k§ resonant condition. This coupling allows the simultaneous
— 0}, andAw]=w)/y+v2ki— ol are the frequency mis- SWLand SWBinteractions.

matches. The total derivatives in Eq¥) and (8) are char-

acterized by the Langmuir and laser group velocities respec- IV. ALONG THE CHARACTERISTICS

tively in the convective part. If the dispersion relations are ) . . . .
exactly satisfied, there will be no mismatches. For a small Th_e f'_rSt order partial d|fferer_1t|al equation that we are
plasma density deviation, the mismatches are nonzero. Sin(,cé’n.s'derlng can be transformed into a set of ordlnary differ-
the density appears equally in both E¢Y.and(5), and also eqtlal equations along the_ characterls{ﬂfs,la. Following
sincew,=w, , the two mismatches are always the same withthis representation, we write the equations along the laser,

Awi=Awf. For electron temperature deviations, which ap_ggl(lj btehégn n(]::;irr]z;cftoe"r(i)s\;lii%s Vt\ﬁi\lljglﬂlcig: g??:evrzéiesgztsif-ield
pear in Eq.(5) only, the two mismatches will be different. . "y, 9 o )
in its own frame of energy transmission. For the laser field,

we are following the same wave packet. For the beam, we
IIl. BEAM ACCELERATION are following a fixed ensemble of beam electrons interacting
When the plasma-filled wiggler is fully loaded with mi- with the qutially uniform fields. The elect.ron phase in the
crowave field, and the Langmuir mode is generated, a shoRonderomotive well isf;=k z,;(t) —w t. Since the Lang-
electron bunch is fired into the device. During this brief mo-Muir group velocity is much smaller than the laser group
ment when the beam traverses the wiggler, bBWLand  Velocity, which is already small in the plasma, we take
SWaBinteractions take place simultaneously. Since the trantgL=0. The partial time derivative of the Langmuir mode in
sit time of the beam is almost negligible compared to theEa. (7) can be expressed in terms of the laser characteristic.
loading time of the wiggler plasma, and also since the bean] "€ €quations now read
density is usually much lower than the background plasma,

2
the feedback of the beam on the Langmuir mode of (£g. 200 S% S %asaw cosA ¢, (14)
in the presence of the large parametric driving force, is not 9 dz 4y
considered. The beam inteacts with the system through the 5
free-electron-lase8 W Bresonance; which relies on the reso- ) dé. _ (ck)” asaw _ Ad—(Aad). (15
nant condition ez, T a2 a, OO ¢ (Awi),
ws— Ko, =Ky, (10) dag
2wsv93£20, (16)

stating that the Doppler shifted laser frequency is equal to
the wiggler frequency in the beam frame. The energy and

i ; ; d¢ w?
phase of each beam electron in the ponderomotive potential “Ps__Tp ; _ 2
are given by 2wsvgs dz ap sin(y .+ ¢ ) —(Awg), (17)
dy? . dy? . .
ot | T T @ssAw cog A ¢)sin( i+ ) S — w5y COSA ¢ SN+ ¢ ) +| wsasdy SIN A
. 2yBw5 2,80}
+| 0ady SiNA$) — — 1 —Fay |cos g+ ), ~ ek, ap|cosuit ), (19
11
Wi ok 19
dip; UZE_C L(sz_BL)v (19
5t |~ ck(Bz = BU), (12) _ , ,
where we have equated the sine and cosine terms indepen-

dently. The Langmuir mode,, in Eq. (14) is linear in zg
whenAg is small. It saturates when the cosine factor begins
to take action. The saturation level depends more on the rate
Ywhere A¢ becomes significant than on the prodagh,,,
which determines the initial linear growth rate. The evolution
&f A¢ along the wiggler is given by Egél5) and(17). From

Eq. (16), the laser field amplitudeg is constant. This result

is based on linear perturbation analysis, which requires

respectively, where we have used Ef) to obtain thea,
term in Eq.(11), andB,=v,/c and B, = w, /ck_. The con-
vective part of this total derivative carries the beam velocit
Uy.
The action of the Langmuir mode is exercised through th
a, term and the relative phagf in Eq.(11). The Langmuir
wave has a phase velocity, /k, , which can trap the beam

electrons Wi.l'h equal velocity,= w /k_ . Although the Ra- a,<1. Shoulda, be large, the dispersion relation af,
man scattering can operate ¢p= s+ ¢, modes, we have according to Eq(2) including 6N, would lead to a cutoff

_partlcular_ly chosen the upper sign. The fundar_’ne_ntal reasoﬁ'equency with large fluctuation where the propagation of the
is that, withy, = s+ ¢y, the beam velocity satisfies laser field is prejudiced. The acceleration of an electron

bunch in the established Langmuir mode is described by Eqs.
(13) (18) and (19). For the parameters that we are considering

WL W
ke kstky' below, the dominant term in E418) is the Langmuir mode.

Uz
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V. OPERATING PARAMETERS 3 y T y T y T y T T T

From the dispersion relations given by Eg4) and (5),
with ws=w_, we have ks=(v./c)k . =uk_  and from
k. =k,+ ks we havek, =k, /(1— u). The wave vectors are, 2] A9
therefore, specified by the wiggler period. For a given
plasma densit\N, the mode frequency is then given by the
plasma dispersion relatiom{ = w5=w3/y+(uck)? The | i
Langmuir phase velocitw, /k, can thus be chosen in terms
of w,, u, and k,. We consider plasma temperature
Te=1eV, density N=1.2x10%¥cn, initial energy
v(0)=1, wiggler period\,=1 cm, initial beam energy 0 WWWWWWWWWMWWWWWWW
v,(0)=10, laser field ag(0)=0.5, and Langmuir field i ]
a,(0)=0. The initial relative phases are taken arbitrarily as
¢s=0 and¢, =0. The number of sampled electrons is 300, -1 — .
and their initial distribution in the ponderomotive potential is %0 100 150 200 20, 30

uniform. Since u=1.4x10 3<1, k_~k,, the Langmuir ]
FIG. 1. The Langmuir moda,, and the phasé¢ are plotted

mode hasw =w,, and\ ~\,,. The plasma frequency is i ; . ) > "
w,=1.9x 10" rad/s, which corresponds to a 30 GHz micro- agaz';‘StkthiforT(‘;_“zzed "c‘j"gg'flr d'lftazn;ze“zz/"Ll(‘;‘ﬁ'tzh B\, =200 G,
wave source. We have included the effect of the laser field ift @S/ (Ck.)™=~10"%, andAwi/(ck )= =2x10""
the t_)ackgrognd pIaerna enezrgy SO that(1+a§/2)1’2 ac- ¢ =A¢, and Eq.(15) becomes an equation fdr¢. Since
cording to £2=(mc?)?+(pc)?, p=ymv, and e=ymc?. A ¢=0 initially, it remains zero thereafter. With the invari-
For the plasma density chosen above and hence the micrgz .o of A, Eq. (14) gives a linear growth of,. Without

wave frequency used, the phase velocity of the Langmw[Isin ; ;
: : : - g the spatial average of Ed.7), and solving Eqs(14)—
mode, with the chosen wiggler period, happens to be in th?l?) numerically, the Langmuir amplitude is still large al-

vicinity of the speed of light. The choice of plasma density isthough it is no longer linear along the wiggler. Since the

directly related to the availability of microwave source. frequency doubling quadratic terms in the fluid equations are

V\/te note t(;]at., b3|' f|xmg_ tgetﬁlasma dt§n5|ty, electtron t?r?'not considered here, the saturation level of the space charge
perature, and wiggier period, the operating parameters ot g, g unrealistically high, which is incompatible with our

dgwce arte un||c|1uely ge:‘med. dHowever,Ithe Iasefr frequt?anctzzl near parametric analysis. In practice, the quadratic terms
given externally, and 1o produce a plasma of exactly tha,, 4 jimit the space charge field at a much lower level

density is impossible, and some frequency mismatch IS o e the driving energy begins to leak to other frequencies.

therefore, unavoidable. If the plasma density is higher tharIlior two mismatches identically equal, similar solutions are

what it should be, the laser field will be reflected on th.eobtained. This is because, by taking the difference between

plasma-vacuum interface. We, thus, consider only neganvgqs_(ls) and(17), the mismatch can be eliminated to yield
frequency mismatch corresponding to density below the eXihe same equatio'n b

pected value. Deviations of plasma temperature make the We now consider unequal mismatches. We note that the

Seneration of the Langmuir mode depends on the pondero-
motive product,a only, which allows us to combine either

—

Ns/N =720. Consequently, we fix our normalized wiggler

lengthZ(L) =L/\ =300 to assure a spatially uniform laser ; \,qerate wiggler field with a weak microwave, or a weak

field. , ... wiggler field with a moderate microwave source. With wig-
Due to the small group velocity, the laser characteristic ler field B, =200 G, the evolution of the Langmuir mode

moves along slowly. In order to integrate these equationg and the phasa ¢= (¢, — &) as a function of the nor-
correctly, we need to take very small step sizes. In our Casemailized wiggler distancziz/)\s are shown in Fig. 1. The
we have divided each wiggler period ink40* steps. This is evolution of the phasa e accorLding to Eqs(15) aﬁd ('17)
exclusively a feature of our system that operates near thgnd the cosine factor in Eq14) make the Langmuir mode
cutoff with a slow group v.el(.)cifcy. The phasg in Eg. (17) saturate ata,=0.25 with A¢=m/2. Our spatial solution
along th_e I_aser _characterlsnc 4= _.kLZ/'“' The interval along the characteristic corresponds to the temporal solution
of Az within which ¢, varies by 2r is Az=uh =phw, 4 any fixed location along the wiggler. Consequently, a uni-
which is much less than the W|ggler _perlod. Conseqqentlyform Langmuir mode is established in the wiggler. Here, the
we_need a large number Of_ grid points over one ngglerLangmuir mode settles down to a negative amplitude, which
period to accurately follow): in Eq. (17). corresponds to a phase shift of Should¢s= 7 be chosen
initially, a, would be positive. The results of Fig. 1 demon-
VI. FREQUENCY MISMATCHES strate the importance of the relative phases and frequency
mismatches in our model. The primary message here is that
We consider the generation of the Langmuir mode bythe Langmuir mode with a specific wave vector can be
examining, first, the experimentally unrealistic case of zeraeadily driven in this system with simple equipment and
mismatches. In this case, the Langmuir mode grows to amweak wiggler field. A spatially uniform Langmuir mode is
plitudes much larger than unity. This solution can be undernow established whose amplitude is limited by real condi-
stood by using the fact that, varies rapidly to take a spatial tions.
average of Eq.(17), which gives ¢;=0. Consequently, To consider beam acceleration, we then fire intermittent
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FIG. 2. The beam energy is plotted against the normalized b,
j

wiggler distance Z=z/x with B,=200G, N;,3;=1.188,

3 —
1.190,1.206¢10°° e, A= /2. FIG. 3. Energy distributiony; of the sampled electrons as a

. . . function of the ponderomotive phasg in the potential well at
short electron bunches into the device. The interval betweep_ 5\ i N—1 188x 10 crrd.

bunches corresponds to the loading time of the wiggler

plasma. We th(_an integrate Edtg) and(19) along b beam "@ZJ approaches unity, which lowers the energy gain. To sum-
characteristic in the presence of an established uniforf o ;e our findings, it is absolutely essential to choose the
Langmuir mode and t_he profiles afp and ¢, . From F|_g. 1, primary system parameters,, , s, 1Ky, Such thaig, is as

we takeA ¢=m/2 as input plusp, =0. The acceleration of  |ose to unity as possible with minimum frequency mismatch
each beam electron depends on the phase the pondero- 4 acertain the excitation of the Langmuir mode and the ac-
motive potential. Its evolution is a function of the velocity .qjeration of the beam over the entire wiggler. Unfortu-
mismatch between the electron and the Langmuir phase Veately, Eq.(20) also claims that we are unable to increment
locity as described in Eq19). Here, the equations are inte- \ore” than 460 on the beam energy limited by the wiggler
grated along the fast beam characteristic so that 100 gridize for uniformas. This limitation cannot be contoured by
points in each wiggler period are sufficient. Since the Langy,creasing the plasma density with compatible microwave
muir phase velocity is a function of plasma density, we anagg ;rce sinced, =1 is required at any density with matching
lyze the beam acceleration for several densities, all in the, .ce As density goes up, wiggler period has to go down to
vicinity of p =1. Taking a positive amplitude with yeen the | angmuir mode phase velocity close to the speed of
ap=0.25, the results in Fig. 2 show a linear acceleration 1Qight Should we operate the system at much higher densities
y=320 wheng, =1 exactly. For very small deviations with ithout shortening the wiggler period correspondingly to
B slightly above unity, the beam energy in Fig. 2 Showsgchieve much higher energies singewould be much larger
oscillations at low levels, and likewise for deviations slightly than unity, we would be disappointed. The faqﬂﬁralone in
bEIO\.N qnlty. Consequently, Fh's puts a strong d_emand O'Eq. (20) would not lead to higher energies since the cosine
monitoring the plasma density at the exact desired Valuefactor in Eq.(18) would set in immediately at largg, to

which .WO_UId _also control the frequency m'smatCh‘ The €Nsaturate the beam energy at low levels. Numerical integra-
ergy distribution of the sampled electrons in the ponderomoﬁon, in this case, would require very dense grid points to

tive well atZ=300 with 5, =1 is shown in Fig. 3, which accurately follow they; in the cosine factor.
shows a sizable energy distribution ranging from unity to

510.
To understand the linear growth, we examine H3S) VII. DISCUSSIONS AND CONCLUSIONS
and (19) for the case ofg =1. We observe that Eq19) For an electron beam to reach, for exampje; 200 or

indicates thaty; approaches a constant asymptoticallysas 100 MeV at the end of the wiggler, there is X.60~* J for
goes to unity. For the electron energy, E48), without the  each electron. With a beam density of ‘¥@m?®, this
smallasa,, terms, shows thaty; /dz, approaches a constant amounts to a beam energy density 0f=0.16 J/cm. In
as well. The individual electron energy and, hence, the avelsteady state, the microwave energy density in free space
age beam energy grow linearly along the wiggler. Undefand inside the plasmdJ, satisfy the Poynting vector, or

these conditions, Eq18) becomes energy density flux, continuity across the plasma-vacuum in-
2 terface with
w
¥2)= o2 ki ap=Blkz)a,. (20 K,
UoC=Upvgs=UpC oo (21

S

According to Eq.(20) of linear growth, and witha,=0.25,

we have y=2mx300a,=460 at the end of the wiggler, where vy is the group velocity in plasma. By using
which accounts of the numerical result. Shogidbe differ- ~ Ag=720\, we getv 4=4.2X 10° cm/s. With this group ve-
ent from unity, then neitheg; nor dy;/dz, is stationary as locity, it takes 70us to fill up the wiggler 63 m in length
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with microwave field. We can, therefore, build up a high four entity (S,W,L,B) interaction is executed through two
energy density field in the plasma with a low energy densityparametric interactions, the Rama®WL) and the free elec-
source in free space. This spatially uniform microwave fieldtron laser EWB), respectively. Our model has included the
energy is then transferred to the beam of lenbj<L, relative phasesps and ¢, in the fast oscillating harmonic
which takes about 10 ns to traverse the wiggler, launched ghases K.z— wst) and  z—w t). This happens to be a
the moment when the wiggler is completely loaded with mi-very important element in the dynamics of a plasma-loaded
crowave. We then havd,,=U,=UC/v4s. Let us consider free electron device. Operating in the pulsed mode near the
that the beam, the plasma, and the microwave have equalitoff, the merit of a plasma-loaded free-electron device is
cross sectioné.. The microwave energy is then estimated bythat it can readily generate a Langmuir mode by Raman in-
W=ULA=UyLA. With A=1 cn?, we need a microwave teraction with only a small wiggler field and an available
energy of W=50 J. With the loading time of 7Qs, the  microwave source in contrast to wake field and beat wave
source in free space has to have a powelPsf700 kW.  schemes. The electron beam is then efficiently accelerated by
Since the group velocity is much less than the beam velocitythe space charge field of the Langmuir mode. Although the
the wave energy could be depleted by the leading edge of ponderomotive ternaga,, in the beam energy equation is
long beam. Our configuration is, therefore, suitable only tonegligible, the free-electron-laser interaction makes its pres-
accelerate short beam bunches with, for examiplesL/10.  ence through the ponderomotive phase, described by Eq.
Between one bunch and the other, the plasma has to be r&t9), due to the cosf+¢,) factor in Eq.(18). Without the
loaded with microwave field. In our calculations, we haveplasma loading, a conventional inverse free-electron-laser
usedag(0)=0.5 in the plasma. This normalized amplitude is device would require a much larger wiggler field and micro-
equivalent to a microwave energy in the plasma loaded wigwave power to achieve the equivalent acceleration.
gler volume W=40 J. Since we are operating in pulsed
mode, there is no strong power demand on the microwave
source. By extending the beam intermittent time, the wiggler
plasma can be loaded over a longer period with a less pow- This work was partially supported by the Conselho Na-
erful source. cional de Desenvolvimentos Cientifico e Tecnologico
We have examined the use of a plasma loaded freelCNPq, The Brazilian Council of Scientific and Technologic
electron-laser device to accelerate an electron beam. THeevelopments
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